23,307 research outputs found

    The role of entanglement in dynamical evolution

    Full text link
    Entanglement or entanglement generating interactions permit to achieve the maximum allowed speed in the dynamical evolution of a composite system, when the energy resources are distributed among subsystems. The cases of pre-existing entanglement and of entanglement-building interactions are separately addressed. The role of classical correlations is also discussed.Comment: 5 pages, 1 figure. Revised versio

    Quantum tensor product structures are observable-induced

    Full text link
    It is argued that the partition of a quantum system into subsystems is dictated by the set of operationally accessible interactions and measurements. The emergence of a multi-partite tensor product structure of the state-space and the associated notion of quantum entanglement are then relative and observable-induced. We develop a general algebraic framework aimed to formalize this concept. We discuss several cases relevant to quantum information processing and decoherence control.Comment: 5 Pages LaTe

    Demonstration of non-Markovian process characterisation and control on a quantum processor

    Get PDF
    In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated -- or non-Markovian -- noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10−310^{-3}. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction

    Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    Get PDF
    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined

    Global crop production forecasting data system analysis

    Get PDF
    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources

    Quantum computation over continuous variables

    Get PDF
    This paper provides necessary and sufficient conditions for constructing a universal quantum computer over continuous variables. As an example, it is shown how a universal quantum computer for the amplitudes of the electromagnetic field might be constructed using simple linear devices such as beam-splitters and phase shifters, together with squeezers and nonlinear devices such as Kerr-effect fibers and atoms in optical cavities. Such a device could in principle perform `quantum floating point' computations. Problems of noise, finite precision, and error correction are discussed.Comment: 9 pages, Te

    Novel six-coordinate Aryl- and Alkyltin complexes

    Get PDF
    Organo-tin compounds have wide applications as pesticides and as intermediates for organic synthesis.Âč They are invariably Sn(IV) derivatives and are generally four-coordinate.ÂČ The mixed organo/chioro compounds of the type RnSnCI4-n do however have the ability to expand their coordination numbers to five or six. This depends critically on the substituents - with four organic groups, R₄Sn, there is no tendency at all to coordinate extra ligands, while at the other extreme SnCl₄ readily forms six-coordinate [SnC1₄L₂] complexes since the electronegative halo groups increase the Lewis acidity of the tin centre

    Quantum Error Correction on Linear Nearest Neighbor Qubit Arrays

    Get PDF
    A minimal depth quantum circuit implementing 5-qubit quantum error correction in a manner optimized for a linear nearest neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.Comment: 4 pages, 5 figure

    Cost/benefit analysis for the Operational Applications of Satellite Snowcover Observations (OASSO)

    Get PDF
    The author has identified the following significant results. The total cost associated with satellite snow cover area measurement (SATSCAM) in the Colorado ASVT was 2,050whichequatesto0.22/sqkm.Whenextrapolatedtothe2,238,890kmareaimpactedbysnow−surveyforecastingintheWesternUnitedStates,thetotalyearlycostofemployingSATSCAMisapproximately2,050 which equates to 0.22/sq km. When extrapolated to the 2,238,890 km area impacted by snow-survey forecasting in the Western United States, the total yearly cost of employing SATSCAM is approximately 493k. The estimated total benefits to hydroeletric energy production is 10myearly,withthePacificNorthwestreceivingthesmallestbenefits,andtheRioGranderegionthehighest.Irrigatedagriculturereceivesayearlytotalbenefitof10m yearly, with the Pacific Northwest receiving the smallest benefits, and the Rio Grande region the highest. Irrigated agriculture receives a yearly total benefit of 38m, with the Lower Colorado region receiving the largest per acre benefit and the Pacific Northwest receiving the lowest
    • 

    corecore